
Site 2: Roughlee weir, Roughlee

Site Assessment

This weir is thought to have been constructed for a mill or mills in the village of Roughlee, and is likely to be at least 100 years old, though this has not been confirmed. On the day of the site visit, it was not possible to assess the state of repair of the weir due to the build up of ice over its surface. Adjacent to the weir there is a sluice gate and beginnings of a channel, with the water immediately over spilling back into the beck. It is interpreted that historically a leat ran down the side of the river, at approximately the level of the weir. The line of this old channel is now over grown with trees, and it seems that there has also been some subsidence of the bank above the leat. Apart from immediately adjacent to the weir, there are no obvious signs of a channel here.

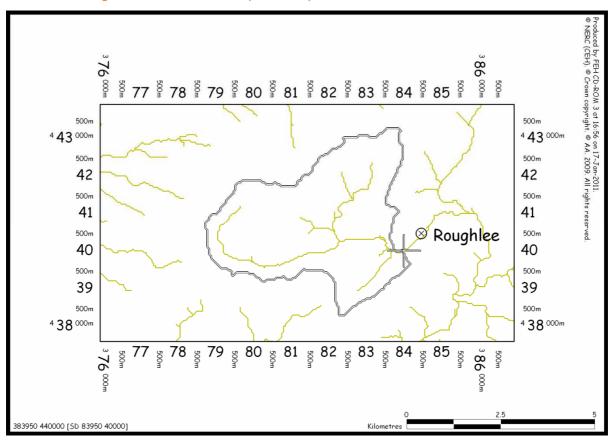

Figure 2 The weir from above with the old sluice gate on the far right and overspill

Figure 3 The weir face showing the overspill on the far left

This site would be suitable for the installation of a turbine directly onto the weir or approximately where the overspill is located. Access for construction would be on the far bank through the land associated with the caravan park.

Catchment Analysis

Figure 4 Catchment boundary defined by Flood Estimation Handbook Software

The Flood Estimation Handbook software is used to determine the following catchment descriptors, for the proposed intake location, selected during the site visit.

Intake Grid Reference	383950, 440000
Powerhouse Grid Reference	383950, 440000
Catchment Area	15.3 km ²
Annual Rainfall	1437 mm

Annual Flow Statistics

Low Flows software is used to produce a Flow Duration Curve (FDC), which demonstrates how the river flow varies throughout the year. It presents the percentage time of the year each flow rate is exceeded. A particular notation is used to refer to FDC flow rates; e.g. ' Q_{95} ' refers to the flow rate which is exceeded 95% of the year.

No existing abstractions have been identified at this site, but it is recommended that should this site be further investigated, flow monitoring equipment be installed at the earliest opportunity.

Period	Mean Flow Rate [m³/s]	Flow Rate at Q ₉₅ [m³/s]		
Annual	0.493	0.0738		
January	0.876	0.182		
February	0.637	0.142		
March	0.656	0.154		
April	0.406	0.105		
Мау	0.255	0.0815		
June	0.197	0.0655		
July	0.182	0.0592		
August	0.276	0.0646		
September	0.313	0.0608		
October	0.55	0.0863		
November	0.696	0.106		
December	0.87	0.149		

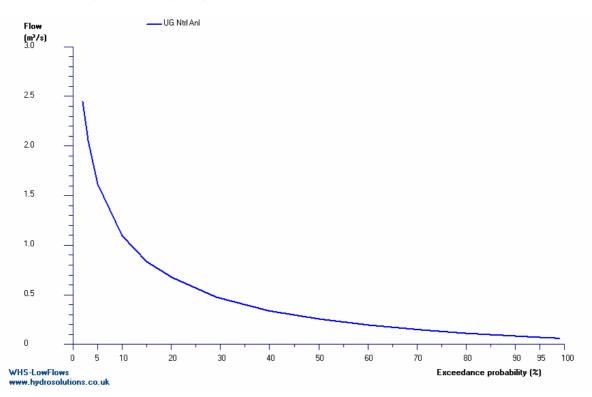

Table 1 Mean flow rate and flow rate at Q_{95}

Table 2 Annual flow duration data

Exceedance Probability	Flow Rate [m ³ /s]
5	1.668
10	1.131
20	0.697
30	0.481
40	0.349
50	0.263
60	0.202
70	0.155
80	0.117
90	0.087
95	0.074
99	0.06

Inter Hydro Technology Forest of Bowland AONB Hydro Feasibility Study

Hydropower Analysis

Run Date	Site: Roughlee /Time: 12 January	2011 at 13:47			
Mean Flow:0.42 m3/sRated Flow:Provisional Rated Flow:0.46 m3/sGross Hydraulic Head:Residual Flow:0.045 m3/sNett Hydraulic Head:				5.00 m	
Applicable Turbines	Gross Annual Average Output	Nett Annual Average Output	Maximum Power Output	Rated Capacity	Minimum Operational Flo w
Propellor	49.0	48.5	16.9	16.2	0.31
Crossflow	62.5	61.9	15.5	14.5	0.11
	MWh	MWh	kW	kW	m3/s

(Residual flow = Q95)

Table 3 Hydropower Analysis

Gross Head [m]	5
Net Head [m]	4.75
Design Flow [m ³ /s]	0.46m ³ /s
Rated Capacity [kW]	15 kW
Average Annual Energy Output [MWh]	60MWh
Average annual Carbon Dioxide offset	138 tonnes

Impact Assessment

This is an existing barrier to fish migration. As a consequence, a fish pass may not be required for this scheme. Alternatively, depending on stakeholder's wishes, the corresponding installation of a fish pass may benefit the ecology of this watercourse. Upstream of Roughlee however, there are further significant barriers in the form of United Utilities reservoirs.

The weir is immediately opposite private dwellings and a primary school, on the main road through Roughlee. It will therefore be important to minimise noise from any installation. Roughlee is an attractive village, and the weir is an important historic feature of the village as a visitor attraction and beauty spot. It is also close to private residential properties. The visual and noise impact of a scheme here will need to be minimised.

According to the Forest of Bowland Landscape Character Assessment, this land is identified as Moorland Fringe, and is within the Forest of Bowland Area of Outstanding Natural Beauty.

Statutory Requirements

The Environment Agency will need to be consulted for works in a river and to gain an abstraction license. As the existing weir presents a fish migration barrier, the Environment Agency may be interested in installing a fish pass in parallel with any work to construct a hydro scheme. This scheme would not result in any depleted reach, and a pipe line is not required.

It will be necessary to gain advice from an Ecologist to ascertain the degree of environmental assessment required at this site.

Budget Development Cost

The total budget cost for the whole scheme is approximately **£280,000**. It should be noted that the civil works costs can vary considerably as material costs fluctuate. Likewise, mechanical and electrical (M&E) equipment costs vary in accordance with demand. Professional fees should be considered subject to change, as the scope of licensing and planning requirements are not yet defined. Consequently the budget estimate at this stage should be considered accurate to plus or minus 20%.

Table 4 Development Budget Cost

Budget Scheme Cost Estimate Roughlee

Roughlee				
ITEM	UNIT	QUANTITY	MIN	MAX
Turbine				
Turbine Quotation	No	1	£70,000.00	£87,500.00
Grid Connection				
Grid Connection	No	1	£5,000.00	£6,250.00
Civils				
Weir	m³	40	£20,000.00	£25,000.00
Fish Pass	т³	0	£0.00	£0.00
Metalwork	m	8	£16,000.00	£20,000.00
Fish Pass Length	m	0	£0.00	£0.00
Pipe Installation	m			
Rock	m	10	£1,100.00	£1,375.00
Gravels	m	10	£400.00	£500.00
Soft	m	0	£0.00	£0.00
Pipe Materials	No	1	£0.00	£0.00
Temporary Access	m			
Rock	m	50	£22,000.00	£27,500.00
Gravels	m	200	£16,000.00	£20,000.00
Soft	m	0	£0.00	£0.00
Temporary Access on Good Ground	m	0	£0.00	£0.00
Powerhouse				
Powerhouse	kW	15	£15,000.00	£18,750.00
Prelims Duration	Montho	4	£12,000.00	£15,000.00
Duration	wonths	4	£12,000.00	£15,000.00
Sub Total				
Sub Total			£177,500.00	£221,875.00
Duefeeriesal				
Professional Fees Professional Fees			606 605 00	C44 275 00
Professional Fees			£26,625.00	£44,375.00
Sub Total				
Sub Total			£204,125.00	£266,250.00
			,	,
Contingency			040.005.00	
Contingency			£40,825.00	£53,250.00
GRAND TOTAL			£244,950.00	£319,500.00
			,	,

Revenue and Simple Payback period

Energy produced by a hydro scheme at this weir could be used by the community of Roughlee, or sold to the national grid. Due to the relatively remote location of Roughlee village, a grid connection may be problematic, but this has yet to be confirmed.

Under the current government feed-in tariff regulations, hydropower schemes receive a generation tariff according to their rated capacity. Schemes less than 15kW receive 19.9p/kWh. This generation tariff is received regardless of how the electricity is used. If this electricity would be used on site/in the village (e.g. by the local primary school), thenthis would significantly offset import costs. This increases the value of the generated electricity by the import tariff, which is specific to their chosen provider. We have assumed an import value of 5p.

In conclusion, the total value of the generated electricity might be 24.9p/kWh, giving an average annual value of approximately £12,480. This gives a simple payback time of approximately 23 years.

Conclusion

This scheme would seem fairly straightforward to build. There is an existing weir with access for construction. The visual impact and any noise impact would need to be minimised due to the proximity of the scheme to private dwellings. However, the long pay back period of this scheme is likely to render it unattractive economically.

Further Information

This site report is produced by Inter Hydro Technology on behalf of Forest of Bowland AONB, and funded by a partnership including Lancashire County Council, Lancaster & District Local Strategic Partnership, Pendle Borough Council and Ribble Valley Local Strategic Partnership.

This site report should be read in conjunction with the rest of the Forest of Bowland AONB Hydro Feasibility Study which can be downloaded at

http://www.forestofbowland.com/climatechange#hydro

